سفارش تبلیغ
صبا ویژن

































فیزیکی آ

سلول خورشیدی (به انگلیسی: solar cell یا photovoltaic cell یا photoelectric cell) یک قطعه الکترونیکی حالت جامد[1] است که انرژی نور خورشید را مستقیما توسط اثر فوتوولتاییک[2] به الکتریسیته تبدیل می‌کند.

سلول خورشیدی ساخته شده از ویفر سیلیکون، کاربرد بسیاری دارند. سلول‌های تکی برای فراهم کردن توان لازم دستگاه‌های کوچک‌تر مانند ماشین حساب الکترونیکی به کار می‌روند. آرایه‌های فوتوولتاییک الکتریسیته? بازیافت‌شدنی‌ای را تولید می‌کنند که عمدتاً در موارد عدم وجود سیستم انتقال و توزیع الکتریکی کاربرد دارد. برای مثال می‌توان به محل‌های دور از دسترس، ماهواره‌های مدارگرد، کاوشگرهای فضایی و ساختمان‌های مخابراتی دور از دسترس اشاره کرد. علاوه بر این استفاده از این نوع انرژی امروزه در محل‌هایی که شبکه? توزیع هم موجود است، مرسوم شده‌است.

امروزه انسان با پیشرفت‌هایی که در زمینه‌های مختلف کرده، نیازی روز افزون به انرژی پیدا کرده و این امر او را بر آن داشت تا با روش‌های گوناگون انرژی مورد نیاز خود را کسب کند.

یکی از این روش‌ها که طی 20 سال اخیر، انسان از آن استفاده می‌کند، استفاده از باتری‌های خورشیدی است. خورشید در هر ثانیه حدود 1000 ژول انرژی به هر متر مربع از سطح زمین منتقل می‌کند که با جمع‌آوری کردن آن می‌توان انرژی مورد نیاز برای کارهای مختلفی را تأمین کرد.

 

 

انرژی مورد نیاز بشر و انرژی خورشید [ویرایش]

 

انرژی که از طریق خورشید به زمین می‌رسد 10000 بار بیشتر از انرژی مورد نیاز انسان است [3]. مصرف انرژی در سال 2050 یعنی سال 1429 خورشیدی (40 سال دیگر) 50 تا 300 درصد بیشتر از مصرف امروزی آن خواهد بود. با اینحال اگر فقط 0?1 درصد از سطح زمین با مبدل‌های انرژی خورشیدی پوشیده شوند و تنها 10 ? بازده داشته باشند برای تأمین انرژی مورد نیاز بشر کافی است [4].

 

در مرکز خورشید هر ثانیه 700 تن هیدروژن به انرژی تبدیل می‌شود (به صورت فوتون یا نوترینو). دمای خورشید در مرکز آن 15 میلیون و در سطح آن 6 هزار درجه سانتیگراد است. انرژی تولید شده در سطح خورشید بعد از 8 دقیقه به سطح زمین می‌رسد. نور خورشید که به زمین می‌رسد شامل طول موج‌های زیر است: 47 درصد فرو سرخ، 46 درصد نور مرئی، 7 درصد فرابنفش. از این رو سلول‌های خورشیدی باید در ناحیه فرو سرخ و نور مرئی جذب بالایی داشته باشند.

 

ساختار باتری خورشیدی [ویرایش]

 

باتری‌های خورشیدی معمولاً از مواد نیمه‌رسانا، مخصوصاً سیلیسیم، تشکیل شده‌است. هر اتم سیلیسیم با چهار اتم دیگر پیوند تشکیل می‌دهد و بدین صورت، شکل کریستالی آن پدید می‌آید.

 

در باتری‌های خورشیدی به سیلیسیم مقداری جزئی ناخالصی اضافه می‌کنند. اگر اتم ناخالصی 5 ظرفیتی باشد (اتم سیلیسیم 4 ظرفیتی است)، آنگاه در ارتباط با چهار اتم سیلیسیم یک لایه? آن بدون پیوند باقی می‌ماند (یک تک الکترون). به همین دلیل چون بار نسبی منفی پیدا می‌کند به آن سیلیسیم نوع N) Negative) می‌گویند.

 

درصورتی که اتم ناخالصی دارای ظرفیت 3 باشد، آنگاه یک حفره? اضافی ایجاد می‌شود. حفره را به گونه‌ای می‌توان گفت که جای خالی الکترون است، با بار مثبت (به اندازه? الکترون) و جرمی برابر با جرم الکترون. که این امر هم باعث مثبت شدن نسبی ماده می‌شود و به آن سیلیسیم نوع P) Positive) می‌گویند.

 

هر باتری خورشیدی از 6 لایه تشکیل شده که هر لایه را ماده‌ای خاص تشکیل می‌دهد.

 

عملکرد باتری خورشیدی [ویرایش]

 

با اتصال یک نیمه هادی نوع p به یک نیمه هادی نوع n، الکترون‌ها از ناحیه n به ناحیه p و حفره‌ها از ناحیه p به ناحیه n منتقل می‌شوند. با انتقال هر الکترون به ناحیه p، یک یون مثبت در ناحیه n و با انتقال هر حفره به ناحیه n، یک یون منفی در ناحیه p باقی می‌ماند. یون‌های مثبت و منفی میدان الکتریکی داخلی ایجاد می‌کنند که جهت آن از ناحیه n به ناحیه p است. این میدان با انتقال بیشتر باربرها (الکترون‌ها و حفره‌ها)، قوی‌تر و قویتر شده تا جایی که انتقال خالص باربرها به صفر می‌رسد. در این شرایط ترازهای فرمی دو ناحیه با یکدیگر هم سطح شده‌اند و یک میدان الکتریکی داخلی نیز شکل گرفته‌است.

 

اگر در چنین شرایطی، نور خورشید به پیوند بتابد، فوتون‌هایی که انرژی آنها از انرژی شکاف نیمه هادی بیشتر است، زوج الکترون-حفره تولید کرده و زوج‌هایی که در ناحیه تهی یا حوالی آن تولید شده‌اند، شانس زیادی دارند که قبل از بازترکیب، توسط میدان داخلی پیوند از هم جدا شوند.

 

میدان الکتریکی، الکترون‌ها را به ناحیه n و حفره‌ها را به ناحیه p سوق می‌دهد. به این ترتیب تراکم بار منفی در ناحیه n و تراکم بار مثبت در ناحیه p زیاد می‌شود. این تراکم بار، به شکل ولتاژی در دو سر پیوند قابل اندازه گیری است. اگر دو سر پیوند با یک سیم، به یکدیگر اتصال کوتاه شود، الکترون‌های اضافی ناحیه n، از طریق سیم به ناحیه p رفته و جریان اتصال کوتاهی را شکل می‌دهند. اگر به جای سیم از یک مصرف کننده استفاده شود، عبور جریان از مصرف کننده، به آن انرژی می‌دهد. به این ترتیب انرژی فوتون‌های نور خورشید به انرژی الکتریکی تبدیل می‌شود.

 

هر چه میدان الکتریکی درون پیوند قوی‌تر باشد، ولتاژ مدار باز بزرگتری بدست می‌آید. برای دست یافتن به یک میدان الکتریکی بزرگ، باید اختلاف ترازهای فرمی دو ماده p و n از یکدیگر زیاد باشد. برای این منظور باید انرژی شکاف نیمه هادی بزرگ انتخاب شود. بنابراین ولتاژ مدار باز یک سلول خورشیدی با انرژی شکاف آن افزایش می‌یابد. اما افزایش انرژی شکاف سبب می‌شود، فوتون‌های کمتری توانایی تولید زوج الکترون-حفره داشته باشند و بنابراین جریان اتصال کوتاه کمتری نیز تولید شود. بنابراین افزایش انرژی شکاف، روی ولتاژ مدار باز و جریان اتصال کوتاه سلول دو اثر متفاوت دارد.

 

فناوری‌های ساخت سلول‌های خورشیدی [ویرایش]

 

در حال حاضر دو فناوری در ساخت سلول‌های خورشیدی غالب است: فناوری نسل اول و نسل دوم.

 

فناوری نسل اول بر پایه ویفرهای سیلیکونی با ضخامت 400-300 میکرومتر است که ساختاری بلوری یا چند بلوری دارند که یا از بریدن شمش بدست می‌آیند یا از روش EFG و با کمک خاصیت مویینگی رشد داده می‌شوند.

 

فناوری نسل دوم یا تکنولوژی لایه نازک، براساس لایه نشانی نیمه هادی روی بسترهای شیشه‌ای، فلزی یا پلیمری، در ضخامت‌های 5-3 است[5].

 

هزینه مواد اولیه در تکنولوژی نسل دوم، پایین‌تر است و از آن گذشته، اندازه سلول تا 100 برابر بزرگتر از اندازه سلول ساخته شده با تکنولوژی نسل اول است که مزیتی برای تولید انبوه آن محسوب می‌شود. در عوض بازدهی سلول‌های نسل اول، که اغلب سلول‌های بازار را تشکیل می‌دهند، به دلیل کیفیت بالاتر مواد، از بازدهی سلول‌های نسل دوم بیشتر است. انتظار می‌رود اختلاف بازدهی میان سلول‌های دو نسل با گذشت زمان کمتر شده و تکنولوژی نسل دوم جایگزین نسل اول شود[6]

 

در سال 1961، Shockley و Queisser با در نظر گرفتن یک سلول خورشیدی پیوندی به شکل یک جسم سیاه با دمای 300 کلوین نشان دادند که بیشترین بازدهی یک سلول خورشیدی صرف نظر از نوع تکنولوژی بکار رفته در آن، 30? است که در انرژی شکاف eV1.4 یعنی انرژی شکاف گالیم آرسناید بدست می‌آید[7]. بنابراین بازدهی سلول‌های خورشید نسل اول و دوم حتی در بهترین حالت نمی‌تواند از حوالی 30? بیشتر شود. این در حالی است که حد کارنو برای تبدیل انرژی خورشیدی به انرژی الکتریکی 95? است[8]. و این مقدار تقریباً سه برابر بیشتر از بازدهی نهایی سلول‌های نسل اول و دوم است.

 

بنابراین دستیابی به سلول‌هایی با بازدهی‌هایی دو تا سه برابر بازدهی‌های کنونی، امکان پذیر است. سلول‌های خورشیدی که دارای چنین بازدهی‌هایی باشند، نسل سوم سلول‌های خورشیدی نامیده می‌شوند. سلول‌های متوالی، سلول‌های خورشیدی چاه کوانتومی، سلول‌های خورشیدی نقطه کوانتومی، سلول‌های حامل داغ، نسل سوم سلول‌های خورشیدی را تشکیل می‌دهند[9].

 

ساخت سلول‌های خورشیدی با استفاده از مواد آلی [ویرایش]

 

سلول‌های خورشیدی ساخته شده از مواد آلی در مقایسه با همتایان سیلیکونی خود بازده بسیار کمتری دارند. اما به دلیل هزینه ساخت پایین و همچنین قابلیت‌هایی مانند انعطاف پذیری برای مصارف غیرصنعتی مناسب هستند. شارژر موبایل قابل حمل، کار گذاشتن باطری‌ها در سطوح دارای انحناء مانند بدنه ماشین‌ها و حتی استفاده از آن‌ها در لباس‌ها، از مصارفی است که برای سلولهای خورشیدی آلی (ارگانیک) پیش‌بینی می‌شود. خصوصیت دیگر آنها انعطاف‌پذیری در طول موجی است که در آن بیشترین جذب را دارند. در نتیجه اگر برای مثال ماده آلی با جذب درناحیه زیر قرمز استفاده شود از سلول خورشیدی آلی می‌توان در شیشه‌های اتومبیل، شیشه‌های خانه‌ها و هر مکان دیگری که باید شفاف باشد، استفاده کرد. ساخت سلول‌های خورشیدی آلی از دهه 70 میلادی مورد تحقیق و بررسی علمی قرار گرفته‌است، ولی هنوز نمونه بازاری آن ساخته نشده‌است. از موادی که آینده روشنی در این صنعت برای آن پیش بینی می‌شود کریستال‌های مایع ستونی هستند.


نوشته شده در جمعه 92/7/12ساعت 12:0 صبح توسط زینب دل انور نظرات ( ) |


کد قالب جدید قالب های پیچک